Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chartAbstract High-energy nuclear collisions encompass three key stages: the structure of the colliding nuclei, informed by low-energy nuclear physics, theinitial condition, leading to the formation of quark–gluon plasma (QGP), and the hydrodynamic expansion and hadronization of the QGP, leading to final-state hadron distributions that are observed experimentally. Recent advances in both experimental and theoretical methods have ushered in a precision era of heavy-ion collisions, enabling an increasingly accurate understanding of these stages. However, most approaches involve simultaneously determining both QGP properties and initial conditions from a single collision system, creating complexity due to the coupled contributions of these stages to the final-state observables. To avoid this, we propose leveraging established knowledge of low-energy nuclear structures and hydrodynamic observables to independently constrain the QGP’s initial condition. By conducting comparative studies of collisions involving isobar-like nuclei—species with similar mass numbers but different ground-state geometries—we can disentangle the initial condition’s impacts from the QGP properties. This approach not only refines our understanding of the initial stages of the collisions but also turns high-energy nuclear experiments into a precision tool for imaging nuclear structures, offering insights that complement traditional low-energy approaches. Opportunities for carrying out such comparative experiments at the Large Hadron Collider and other facilities could significantly advance both high-energy and low-energy nuclear physics. Additionally, this approach has implications for the future electron-ion collider. While the possibilities are extensive, we focus on selected proposals that could benefit both the high-energy and low-energy nuclear physics communities. Originally prepared as input for the long-range plan of U.S. nuclear physics, this white paper reflects the status as of September 2022, with a brief update on developments since then.more » « lessFree, publicly-accessible full text available December 1, 2025
-
null (Ed.)In this article, there are 18 sections discussing various current topics in the field of relativistic heavy-ion collisions and related phenomena, which will serve as a snapshot of the current state of the art. Section 1 reviews experimental results of some recent light-flavored particle production data from ALICE collaboration. Other sections are mostly theoretical in nature. Very strong but transient magnetic field created in relativistic heavy-ion collisions could have important observational consequences. This has generated a lot of theoretical activity in the last decade. Sections 2, 7, 9, 10 and 11 deal with the effects of the magnetic field on the properties of the QCD matter. More specifically, Sec. 2 discusses mass of [Formula: see text] in the linear sigma model coupled to quarks at zero temperature. In Sec. 7, one-loop calculation of the anisotropic pressure are discussed in the presence of strong magnetic field. In Sec. 9, chiral transition and chiral susceptibility in the NJL model is discussed for a chirally imbalanced plasma in the presence of magnetic field using a Wigner function approach. Sections 10 discusses electrical conductivity and Hall conductivity of hot and dense hadron gas within Boltzmann approach and Sec. 11 deals with electrical resistivity of quark matter in presence of magnetic field. There are several unanswered questions about the QCD phase diagram. Sections 3, 11 and 18 discuss various aspects of the QCD phase diagram and phase transitions. Recent years have witnessed interesting developments in foundational aspects of hydrodynamics and their application to heavy-ion collisions. Sections 12 and 15–17 of this article probe some aspects of this exciting field. In Sec. 12, analytical solutions of viscous Landau hydrodynamics in 1+1D are discussed. Section 15 deals with derivation of hydrodynamics from effective covariant kinetic theory. Sections 16 and 17 discuss hydrodynamics with spin and analytical hydrodynamic attractors, respectively. Transport coefficients together with their temperature- and density-dependence are essential inputs in hydrodynamical calculations. Sections 5, 8 and 14 deal with calculation/estimation of various transport coefficients (shear and bulk viscosity, thermal conductivity, relaxation times, etc.) of quark matter and hadronic matter. Sections 4, 6 and 13 deal with interesting new developments in the field. Section 4 discusses color dipole gluon distribution function at small transverse momentum in the form of a series of Bells polynomials. Section 6 discusses the properties of Higgs boson in the quark–gluon plasma using Higgs–quark interaction and calculate the Higgs decays into quark and anti-quark, which shows a dominant on-shell contribution in the bottom-quark channel. Section 13 discusses modification of coalescence model to incorporate viscous corrections and application of this model to study hadron production from a dissipative quark–gluon plasma.more » « less
An official website of the United States government
